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The low-frequency motions in a rotating, adiabatic, inviscid fluid planet are barotropic, quasi- 
geostrophic, and quasi-columnar. The only steady motions are differentially rotating cylinders in 
which zonal velocity fi is a function of cylindrical radius r. Projected onto the planetary surface the 
limiting curvature at which the flow becomes unstable is negative: its amplitude is three to four 
times the amplitude for thin atmospheres, for planets in which density decreases linearly to zero at 
the surface. This result, derived first by A. P. Ingersoll and D. Pollard (1982, Icarus 52, 62-80t for 
low zonal wavenumber perturbations, is shown to hold for all quasi-columnar perturbations. When 

- 0 the small amplitude motions are oscillatory. The lowest mode, as regards structure parallel to 
the axis, propagates eastward with a speed proportional to (wavelength):. Both the barotropic 
stability criterion and the phase speed of the normal mode oscillations have features in common 
with Jupiter and Saturn observations, although the test is inconclusive with current data and 
theory. 1986 Academic Pie,s, In, 

INTRODUCTION 

This  is the  s e c o n d  p a p e r  in a ser ies  deal -  
ing wi th  p o s s i b l e  l a rge - sca l e  m o t i o n s  in the 
g iant  p l a n e t s '  fluid in te r io rs .  The  first p a p e r  
( Ingerso l l  and  Po l l a rd ,  1982, he r e ina f t e r  re- 
f e r r e d  to as  IP) p r e s e n t e d  a scale  ana lys i s  
and  a set  o f  e q u a t i o n s  d e s c r i b i n g  mo t ions  in 
a ro ta t ing  sphe re  o f  va r i ab le  dens i t y  when  
the e d d y  v i s c o s i t y  and  s u p e r a d i a b a t i c i t y  
a re  smal l .  A s imple  p r o b l e m  was  so lved ,  
tha t  o f  an inv i sc id  a d i a b a t i c  fluid sphe re  
wi th  a s t e a d y  zona l  w ind  va ry ing  as  a func-  
t ion o f  cy l i nd r i ca l  r ad ius .  This  d i f fe ren t ia l ly  
ro t a t ing ,  c o n c e n t r i c  c y l i n d e r  pa t t e rn  was  
k n o w n  to be  a p o s s i b l e  s t e a d y - s t a t e  config-  
u ra t i on  (Po inca r e ,  1910), but  its h y d r o d y -  
namic  s tab i l i ty  had  not  been  p r e v i o u s l y  in- 
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ves t iga t ed .  IP  r e s t r i c t e d  the i r  ana lys i s  to 
p e r t u r b a t i o n s  o f  low zona l  w a v e n u m b e r ,  
and  f o u n d  tha t  s t ab i l i ty  is c o n t r o l l e d  by  a 
p a r a m e t e r  B a n a l o g o u s  to /3 ,  the  p a r a m e t e r  
wh ich  en t e r s  in the  b a r o t r o p i c  s tab i l i ty  cri-  
t e r ion  for  thin a t m o s p h e r i c  l aye r s  (e .g . ,  
H o l t o n ,  1979). T h e  two  p a r a m e t e r s  d i f fer  in 
bo th  s ign and  m a g n i t u d e ,  h o w e v e r ,  so the  
b a r o t r o p i c  s tab i l i ty  c r i t e r ion  for  d e e p  fluid 
sphe re s  is s igni f icant ly  d i f fe ren t  f rom that  
for  thin l aye r s .  IP  c o n c l u d e d  that  J u p i t e r ' s  
and  S a t u r n ' s  o b s e r v e d  zona l  wind  prof i les  
a re  c lo se  to marg ina l  s tab i l i ty  a c c o r d i n g  to 
this  d e e p  sphe re  c r i t e r ion ,  but  a re  seve ra l  
t imes  supe rc r i t i c a l  a c c o r d i n g  to the  thin at- 
m o s p h e r e  c r i t e r ion .  

T h e  p r e s e n t  p a p e r  e x t e n d s  the  ana lys i s  o f  
IP  to a m o r e  gene ra l  c lass  o f  f lows.  I f  the  
zona l  j e t  spac ing  L is much  less  than  the 
p l a n e t a r y  r ad ius  a0 the  f a s t e s t  g rowing  per-  
t u r b a t i o n s  have  zona l  w a v e n u m b e r s  o f  or- 
de r  ao/L, which  is large .  T h e s e  p e r t u r b a -  
t ions  a re  ou t s i de  the  c lass  c o n s i d e r e d  by  IP. 
The  m o t i o n  is then  q u a s i - c o l u m n a r  in that  
the  sca le  o f  va r i a t i on  in a p l ane  p e r p e n d i c u -  
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lar to the axis of  rotation is much less than 
the scale parallel to the axis. The resulting 
equations are nonseparable,  and the mathe- 
matical difficulties are greater than those 
faced by IP. 

Below we examine the stability of the ro- 
tating cylinder flow to the more general 
class of  perturbations.  We solve for the 
growth rates and spatial structure of  the 
perturbations.  The stability criterion is 
once again a condition on the curvature of  
the zonal velocity profile, and we compare  
these new results with those obtained by IP 
and with Voyager  observations.  The math- 
ematical method is also used to study the 
low-frequency modes of  oscillation of  a ro- 
tating adiabatic fluid sphere. A comparison 
is made between these modes and ordinary 
Rossby waves in a thin atmosphere as well 
as waves on Jupiter.  

The motivation for this study is twofold. 
First, these low-frequency,  inviscid, adia- 
batic, quasi-columnar motions represent  a 
new example of  geostrophic flow, and de- 
serve study for their own sake. Second,  the 
internal motions of  Jupiter and Saturn prob- 
ably affect the flow in the visible atmo- 
spheres. Certain features of  the observed 
c i rcu la t ion- - the  curvature of  the zonal ve- 
locity profile (IP), the preponderance  of 
strong eastward flow on Saturn (Smith e t  

a l . ,  1982; IP), the existence and time-de- 
pendent  behavior  of  long-lived ovals (Inger- 
soll and Cuong, 1981; Mac Low and Inger- 
soll, 1985)--may be inconsistent with some 
of  the hypotheses  about  internal motions or 
lack thereof.  Thus,  surface observations 
may tell us something about the interior. 
But first we must find out what kinds of  
internal flows are possible, that is, consis- 
tent with the equations of  motion. The 
present  paper  is a step toward that goal. 
For  a general review of  atmospheric dy- 
namics of  Jupiter  and Saturn the reader  is 
referred to Ingersoll e t  a l .  (1984). 

M A T H E M A T I C A L  MODEL 

IP derived the anelastic equations of  mo- 
tion (Ogura and Phillips, 1962) that describe 

slow motions in a rotating, quasi-adiabatic 
fluid sphere. These  equations are self-con- 
sistent in that they conserve  energy. Their  
advantage is that they do not propagate 
sound waves.  IP further  restricted consid- 
eration to the case of  an adiabatic f luid--  
one where ent ropy per unit mass is con- 
stant both with respect  to time and 
position. These equations,  IP (40) and (46), 
describe the quasi-columnar motions of  a 
rotating barotropic fluid. The motion takes 
place in a cylindrical annulus of  radius r 
r0 = a0 cos ~, where h is the latitude at 
which the cylinder meets the surface of the 
planet. The radial thickness of  the annulus 
is of  order  L, and the condition L ,~ a0 al- 
lows us to unwrap the annulus and treat it 
using Cartesian coordinates.  The spherical 
geometry  still enters in the density struc- 
ture and in the boundary condition which 
states that the normal component  of  veloc- 
ity is zero at the planetary surface. The co- 
ordinate system and choice of  length scales 
are reviewed in the Appendix.  

Any zonal flow ff that depends only on 
cylindrical radius r is a steady solution. IP 
derive the linear equations that govern 
small amplitude perturbations superposed 
on this basic zonal flow. These equations, 
IP (48)-(53), are the starting point of our 
analysis: 

04, 
u = f f  - -~y e x p [ i k ( x  - ct)], (1) 

v = i k 4 ,  e x p [ i k ( x  - ct)], (2) 

w = i k w  e x p [ i k ( x  - c t ) ] ,  (3) 

(o 4, (b Op 

 Oy2 - k24,) + Or 

dy2] 4 , - p  a -~ '  (4) 

a4, 
( U -  c)k2w = b--~-z ' (5) 

pw = -+04, cot h, 

z = -+h = +s inX.  (6) 

Here  (x, y, z) are Cartesian coordinates 
with x to the east, y inward along a cylindri- 
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cal radius, and z parallel to the axis of  rota- 
tion. The dependent  variables d) and w are 
assumed to vary on a scale L in the y direc- 
tion and on a scale comparable  to the plane- 
tary radius in the z direction. Departing 
slightly f rom IP we scale r and z by the 
planetary radius a0 rather  than the cylindri- 
cal radius a0 cos ~.. The velocities corre- 
sponding to (x, y, z) are (u ,  v ,  w) .  The un- 
per turbed zonal flow is fi(y), and it is scaled 
by a velocity u0. The wavenumber  k and 
eas tward phase speed c of  the disturbance 
are scaled by L ~ and u0, respectively.  
Time t is scaled by L / u o .  Although the 
above  equations are dimensionless,  we will 
frequently include scaling factors  in our for- 
mulas to clarify the physical dependence.  

The important  dimensionless numbers  
are b ~ and 6, where 

b i _ u l ) a o / ( 2 ~ L  2) :_ 0(1), (7) 

6 = L / a o  "~ 1. (8) 

The fact that the aspect  ratio 3 and the 
Rossby  number  e = b ~3 are small.justifies 
the quasi-geostrophic approximat ion for 
this problem.  Since density p varies on the 
scale of  the planetary radius but not on the 
scale of  L, both p ,  (1 /p )Op/Or  and (1/p)i)p/ fJ  z 

are of  order  unity and vary smoothly in :. 
Their  y variation is negligible for distur- 
bances of  scale L ~ a0. General ly we use a 
polytropic model of  the density 

sin(~-R) 
p ( R )  = po ( w R )  R (r 2 + ~2)12. 

(9) 

Here  R is the dimensionless spherical ra- 
dius, with R = 1 at the planetary surface: r 
is the dimensionless  cylindrical radius, with 
r = r0 = a0 cos)~ in the middle of  the annu- 
lus. 

To examine the stability of  a particular 
zonal flow ~(y) we solve Eqs. (4) and (5) for 
the eigenvalue c. The equations are linear 
partial differential equations in the vari- 
ables d~(y, z.) and w(y, z). The eigenvalue is 
c = c~ + ici ,  so G is the phase speed and k(', 
is the growth rate of  the disturbance.  Most 

of  the examples  are for the profile 

ff = u0 cos(~'y/L), lyl -< L, (10) 

which is a single cosine jet  with peak east- 
ward velocity in the middle of  the channel. 
(One may either regard y and L as physical 
quantities, or else take L = I and treat y as 
dimensionless.)  A few compar isons  are 
made with double and quadruple cosine 
j e t s - - t h e  same profile as in (10) but for the 
regions - L  -< y --< 3L and - L  -< y -< 7L. An 
increase in the pa ramete r  b ~ corresponds  
to an increase in the curvature  of  the veloc- 
ity profile. For  any given b ] the problem is 
to vary the disturbance wavenumber  k to 
find whether  the given profile is unstable: 
that is, whether  posit ive values of  kci exist. 

For this barotropic flow model,  growing 
dis turbances get their energy f rom the ki- 
netic energy of the zonal flow. This require- 
ment is seen by considering the equation 
for disturbance kinetic energy: 

1 

1 dr/ 

lm 06) ~ y  / p d y d c .  (11) 

To derive this equation,  multiply Eq. (4) by 
p~* ,  multiply Eq. (5)* by pw, add the 
two equations,  integrate over  the domain.  
and take the imaginary part of  the result. 
Here tin asterisk denotes  the complex con- 
jugate.  Both the ;12d~/#y 2 term and the it(pw)/ 
0z term in (4) are integrated once by parts. 
The surface terms arising from the integra- 
tions by parts are assumed to vanish. 

The lateral 
to pdp*3 t~ /Oy ,  

the boundary  

surface term is proportional 
which vanishes if we impose 
condition 

= O, y - ± L .  ( 1 2 )  

This condition is equivalent to having solid 
walls on the sides of  the channel. One way 
to show that these artificial boundaries do 
not affect the calculation is to vary their 
position, for example ,  by comparing the 
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single and double je t  solutions with each 
other.  The other  surface term has the form 

bo4~*w = +-bol~l z cot h, z = -+sin ~,, 

(13) 

where we have used the boundary condi- 
tion (6). The fact that this term has no imag- 
inary part means that this term also does 
not contr ibute  to the energy balance.  The 
energy equat ion (11) is obtained after multi- 
plying the result of  these manipulat ions by 
k/2. 

From Eqs.  (1)-(3) it follows that the left 
side of  (11) is dK/dt, the rate of  change of  
dis turbance kinetic energy.  The factor  1/2 is 
needed because ,  al though disturbance en- 
ergy grows at the rate 2kci, there is a factor  
of  1/2 in the express ion for kinetic energy 
and another  factor  of  1/2 f rom averaging 
over  cycles in x. The right side of  (11) can 
be rewri t ten so that the equation becomes  

dK dff 
d t -  f f d~' u'v' pdydz, (14) 

where  u' and v'  are the dis turbance velocity 
componen t s  in the x and y directions, and 
the ove rba r  denotes  an average  over  cycles 
in x. 

The right side of  (14) is thus the sole 
source of  dis turbance kinetic energy for 
this barot ropic  flow model.  For  the distur- 
bance  to grow the term u'v' must  be posi- 
tive where  dff/dy is negative and vice versa;  
the dis turbance must  t ransfer  x m om en t um  
out of  the center  of  the jet.  This is opposi te  
to the t ransfer  that was actually observed  
by Ingersoll  et al. (1981) in Jupi te r ' s  a tmo- 
sphere,  indicating that  the observed  eddies 
on average  are different f rom those consid- 
ered here. Our  result  may still be relevant  
to Jupi ter  and Saturn if at deeper  levels the 
curvature  of  the zonal veloci ty profile is 
limited by these unstable barotropic  eddies. 
Ult imately the re levance of  this barotropic  
model  depends  on the interior being adia- 
batic, as stated at the outset .  

We shall also study the solutions ob- 
tained by setting ~- = 0 in Eqs.  (4) and (5). 

F rom (11) it follows that C i = 0"~ these solu- 
tions are wavel ike in charac ter  and do not 
grow in time. The veloci ty scale u0 is now 
arbitrary,  but by setting b = cos X in (7) we 
adopt  the veloci ty scale 2f~L2/ro, where L is 
the length scale of  the disturbance and r0 = 
a0 cos h is the cylindrical radius in physical 
units. The phase  speed will therefore be 
given in terms of  2f~L2/ro. With ff = 0 the 
coefficients multiplying the terms in ~b and 
w do not depend on y over  the distance of 
L. Therefore  the y dependence  may be fac- 
tored out, and the dis turbance has the form 

f(z) exp[ik(x - ct) + iny]. (15) 

The problem is to find the eigensolutions 
f(z) and the real eigenvalue c for different 
choices of  k and n. The phase speed c(k, n) 
may be compared  to the phase  speeds of  
waves  in thin a tmospher ic  layers and waves  
observed  on Jupi ter  and Saturn. 

M E T H O D  O F  S O L U T I O N  

IP considered the case k ~ 0, which 
means that the physical  wavenumber  of  the 
dis turbance is much less than L -I ,  where L 
is the width of  the jet  (10). In this case Eq. 
(5) becomes  Od~/az = 0, and (4) may be inte- 
grated with respect  to z to yield a differen- 
tial equat ion in y only. Below we do not 
restrict the value of  k, so the differential 
equations (4) and (5) are not separable in y 
and z. Galerkin methods are used to find the 
solution (e.g., Halt iner and Williams, 1980). 

We represent  the solution as a sum of 
basis functions 

J M 

dp = ~, ~, dpj,,fii(z)g,,,(y), (16) 
j =  I m I 

and similarly for w. Here  4~i,, are the un- 
known coefficients,  and fjgm are the chosen 
basis functions.  For  the z direction we use a 
finite e lement  decomposi t ion  with ¢}(z) be- 
ing piecewise linear functions centered on J 
+ 1 equally spaced nodes in the range Izl -< 
sin h. The reader  is referred to Hal t iner  and 
Williams for details. The number  of  finite 
e lements ,  or intervals,  f rom z = - s i n  h to z 
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= sin ~, is J ,  and J/2 is the number  of  ele- 
ments  f rom the equator  at z = 0 to the sur- 
face at z. = sin ,~. Accordingly,  J - 2 has a 
node at the equator  and a node at the sur- 
face,  and is called the l -element  model;  J - 
4 has an additional node halfway between 
the surface and the equator  and is called the 
2-element model,  and so on. We have 
solved the barotropic stability problem for 
the l-, 2-, and 3-element cases.  

For  the y direction we use a spectral  de- 
composi t ion  consis tent  with the boundary  
condition (12), 

gm = sin[m~-(y + L)/2L], 
rn = 1,2,  • - . , M .  (17) 

For  the double cosine jet  the denominator  
2L is replaced by 4L. Typical ly M was ei- 
ther 20 or 40 in our barotropic  stability anal- 
ysis. It is convenient  to think of the product  
J)gm as a single basis function hi, where i = 
M(j  - 1) + m. The max imum value of i is 
therefore  M x J ,  which we denote by N. 
The Galerkin method involves substituting 
the expans ions  of  the form (16) into Eqs. (4) 
and (5), multiplying by each of the basis 
functions hi, and integrating over  the do- 
main. Since there are N basis functions and 
two differential equations,  one obtains 2N 
linear algebraic equations in the 2N un- 
known coefficients for 4, and w. 

As discussed by Halt iner and Williams, 
the Galerkin method leads naturally to en- 
ergy conserva t ion  in equations with qua- 
dratic energy invariants.  The latter phrase 
refers to the terms in the express ion for the 
energy of  the system. In our problem these 
are the terms on the left side of  Eq. (11), 
which are quadratic in 4, and w. One forms 
the Galerkin integrals of  (4) and (5) as if one 
were deriving the energy equation (11). 
This means  multiplying (4) and (5) by ph, 
and not simply by hi before integrating with 
respect  to y and z. With this method the 
energy equation (11) is satisfied exactly 
when the basis function expansion (16) is 
used for 4, and w. 

In finite e lement  jargon the boundary 

condition (6) is a natural boundary  condi- 
tion (e.g., Bathe, 1982). Such boundary 
conditions either involve derivatives (e.g., 
04,/Oz) or cross terms (e.g., both w and 4,). 
To satisfy such conditions one integrates by 
parts as if forming the energy integrals. The 
derivat ives and cross terms are eliminated 
from the surface terms by substituting the 
express ions  for the boundary conditions. 
These terms then appear  in the Galerkin 
equations.  In our case the surface term aris- 
ing f rom (6) is a lways zero because it is 
multiplied by p, which vanishes at the plan- 
etary surface : - +sin ,X. 

The method is much simpler when u is 
constant  (or zero). Then the disturbance 
has the form (15), and the basis function 
representat ion is simply 

J 

4, ~ 4,it)(z.), /Is) 
i I 

with a similar express ion for w. It becomes  
possible to compare  the 4-, 8-, and 16-ele- 
ment  models  in this case. One result of  this 
compar ison  is that the method does well in 
satisfying the boundary  condition (6) even 
without the factor  of  p. We find that the 
ratio w/4, at the surface differs f rom the de- 
sired value cot X by amounts  less than (J/ 
2) -2. For  the 8-element model (,1/2 = 8) the 
error  is less than 1/64. For  the 4-element 
model the error  is less than 1/16. This satis- 
fying of  the boundary  condition (6) goes be- 
yond what is required for energy conserva-  
tion, which is taken care of  automatically 
by the fact  that p = 0 at the surface. 

The Galerkin representat ion of  two vari- 
ables 4, and w with N basis functions leads 
to a linear eigenvalue problem of order  2N 
x 2N, namely,  

BX = c A X .  (19) 

Here  X is the vec tor  of  length 2N contain- 
ing the unknown coefficients 4,i and wi that 
appear  in the expansions  (16) or (18). The 
2N x 2N matr ices A and B contain the inte- 
grals of  each basis function with every 
other  basis function multiplied by the ap- 
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propriate functions if(y), p(z, r0), and so on, 
that appear  in (4) and (5). Finally c is the 
unknown eigenvalue, having the same 
meaning as in Eqs. (1)-(5). 

Equation (19) was solved using IMSL li- 
brary subroutines INV2F,  EIGRF,  and 
E IGZF  on a VAX 11/780 computer .  These 
routines give all 2N eigenvalues, each with 
its own eigenvector.  Only some of  these so- 
lutions are physically significant, however.  
The meaningful solutions look the same re- 
gardless of  how many basis functions are 
added to the representation.  For  J and M 
sufficiently large they vary smoothly in y 
and z. And in the barotropic stability prob- 
lem they are frequently associated with the 
fastest-growing solution. The other  solu- 
tions are artifacts of  the discrete represen- 
tation. They  vary wildly with respect  to y 
and z; their eigenvalues change drastically 
when more elements or more sine functions 
are added to the representat ions (16)-(18). 
And unfortunately,  when ff is not constant 
they sometimes have finite growth rates. 
Problems arise particularly when the physi- 
cally meaningful solutions have zero 
growth rates. Then the spurious solutions 
cannot  be eliminated on the basis of  growth 
rate alone. They  must be examined by vary- 
ing the resolution (number of basis func- 
tions) before any physically meaningful 
conclusions are drawn. 

RESULTS: BAROTROPIC INSTABILITY 

Two kinds of  problems were investi- 
gated: the stability of  the cosine je t  ~- = u0 
cos(zry/L), and the propagation of  waves 
with ff = 0. In both cases the goal was to 
extend the results of  IP, which are valid 
only in the limit k ~ 0. In that limit 4, de- 
pends only on y and obeys  Eqs. (54)-(56) of  
IP, which are 

d24, (B d2U~dy2 ] (~ - c ) ~ 7  + - 4 ,  = 0 ,  (20 )  

21~ dH f~ 
B -  H dr '  H = h pdz. (21) 

Here  we are using dimensioned variables, 

so h = a0 sin h. A useful formula,  valid 
when p approaches zero linearly near the 
outer  surface as in (9), is 

- B  sin 2 h --~ (3.00)21)/a0, h ~ 0. (22) 

In general B, which plays the role of /3  in 
the barotropic vorticity equation of  meteo- 
rology, is negative. This means that distur- 
bances with k ~ 0 cannot  grow unless d2ff/ 
dy 2 is more negative than B somewhere in 
the region. 

If the cylindrical flow if(y) is projected 
onto the planetary surface using dy = - d r  
and r = a0 cos h, the necessary criterion for 
instability is 

1 ( 1 d~ff~ > 0 .  (23) 
sin 2h B s i n  2~ a2 dh2j 

This condition is most likely to be satisfied 
near the peaks of  the eastward jets.  Equa- 
tion (22) gives the value o f B  sinZh as h --~ 0. 
At h = 30 ° the value o f B  sin2h is (-3.29)/3, 
where /3 = 212 cos Mao. At all latitudes B 
sin 2 h is between -3/3 and -4/3, according 
to IP. Figure 1 shows a comparison be- 
tween the observed curvature (I/ao)d2d/ 
dh 2 and B sin z ~.. If  barotropic instabilities 
of  the type considered by IP were limiting 
the curvature of  the zonal flow, the two 
curves should approach each other  but not 
c r o s s .  

For  the cosine je t  (I0) the most negative 
curvature of  ~- as a function of y (or r) is 
--L/07r2/Z 2. If  this were equal to B at latitude 
h = 30 °, one would have 

uoro/21)L 2 = 1.0003, h = 30 °. (24) 

For  larger values of  uoro]2~L 2 the flow 
would be unstable. We shall call this the 
Rayleigh criterion, because of the similarity 
to Rayleigh's analysis for parallel shear 
flows (e.g., Greenspan,  1968). However ,  
(20)-(24) are applicable only for long-wave- 
length disturbances (k ~ 0). 

Figure 2 shows the growth rate contours 
for  0 - kL -< 3, where k is the physical 
wavenumber  and L is defined from the pro- 
file width in (10). The results are a compos- 
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Fro. 1. Curva ture  or second derivative of Jupi ter ' s  
zonal velocity profile, after Ingersoll and Pollard 
(1982). The original data are from Ingersoll et al. 
(1981). Here u is the mean  eas tward wind speed and v 
is the nor thward  horizontal  coordinate (different from 
y in the text). Voyager  1 data are on the left and Voy- 
ager 2 data  are on the right. The smooth  curve to the 
right o f  each profile is/3, the planetary vorticity gradi- 
ent  for thin spherical  shells. The smooth  curve to the 
left of  each profile is B sin e A, which is relevant ti)r 
deep fluid spheres .  The observed  profiles rarely cross  
the left curve  but  often cross  the right curve,  suggest- 
ing that a deep interior flow with the observed curva- 
ture might be marginally stable. 

ire of  1-, 2-, and 3-element calculations, with 
20, 40, and occasionally 80 sine functions in 
the spectral  decomposi t ion.  The fact that 
the zero growth rate contour  does not inter- 
sect the line k = 0 at the Rayleigh criterion 
is due most ly  to the sidewall boundary  con- 
dition (12). Runs for the double and quadru- 
ple cosine jets  give results that approach 
the Rayleigh criterion within 1%. 

Figure 2 extends  the results of IP upward 
f rom the horizontal  axis, that is, f rom k = 0. 
The peak in the growth rate occurs  near k L  
= I,  uoro/(21)L 2) = 1.5. Instability still sets 
in near  uor~/(2f~L e) = 1 over  a range of k L  
f rom 0 to 2. There  are no growing solutions 
for k L  > 2. Never the less ,  Fig. 2 basically 
confirms IP by indicating that the Rayleigh 

AND MILLER 

criterion (24) based on the theory t o r k  --, 
0 provides a good criterion for stability for 
all disturbance wavenumbers .  The phase 
speed contours  (normalized by u0) indicate 
that the fastest-growing disturbance tends 
to travel with that part  of  the flow where the 
Rayleigh criterion is marginally satisfied, 
that is, where B - d 2 ~ / d y  2 is close to zero. 
For values of  uoro/(2~L 2) close to 1.0 the 
criterion is satisfied at the peak of the jet  (c~ 
-- 1.0). For values around 1.5 the criterion 
is satisfied further down the sides of  the jet 
(c~ = 0.65). 

Figure 3 gives a representat ion of the 
fastest-growing disturbance near k L  - 1.0, 
u0r0/(2[~L 2) - 1.5. It is an even disturbance 
in thai the s treamfunction 4' and the x and v 
componen t s  of  velocity are symmetr ic  
about  the equator  z = 0. The northward 
axial velocity ikw is ant isymmetr ic .  This is 
the only physically meaningful solution that 
can grow for this value of uoro/(2~L2). We 
show the results of  the l -e lement  calcula- 
tion. The 2-element calculation is essen- 

d 3 . 0  

~ 2 . 0  
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<~ 
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• ~ speed in 
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Fro. 2. Growth rates and phase  speeds of distur- 
bances  on the cosine jet .  Here y is dis tance inward 
from the cylinder of  radius r0. The cylinder meets  the 
surface of the sphere  at latitude 30 °. Density p depends  
on the spherical radius R, with R 1 and p - 0 at the 
planet ' s  surface.  The eas tward  wavenumber  of  the dis- 
turbance is k, and the half-width of the jet is L. The 
arrow labeled Rayleigh criterion indicates the onset  of  
deep barotropic instability when sidewall effects are 
unimpor tan t  and k L  - ~  0; this criterion was originally 
derived by Ingersoll and Pollard (1982) for deep 
spheres.  
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FIG. 3. Complex phase and amplitude of  the fastest 
growing d is turbance  at k L  = l and uoro/2f~L 2 = 1.5 
(Fig. 2). Here ~ and ikw~ are the s t reamfunct ion and 
axial velocity,  respect ively,  at the surface of  the 
planet,  and  ~ is the s t reamfunct ion  in the equatorial  
plane. Only the relative ampli tudes  and phases  are sig- 
nificant. As  k L  ~ 0 the three phases  approach a com- 
mon  curve.  

tially the same; the phase speed and growth 
rate differ by 10 -3  and 10 2, respectively,  
between the two calculations. The stream- 
function and axial velocity at the surface 
are tbl and ikWl; the streamfunction at the 
equator  is 4~0. The zonal velocity profile is a 
full cosine with maximum eastward veloc- 
ity in the middle of  the figure. Cross stream 
distance is simply y/L as in (10) with the 
origin displaced by one unit. 

The phases of  4~0 and ~bj as functions of 
distance from the jet  center  are perhaps the 
most interesting feature of  Fig. 3. The en- 
ergy equation (14) requires that u'v' be pos- 
itive where dff/dy is negative and vice 
versa. An alternate expression for u 'v ' ,  
which appears in (11), is -(k/2)Im(~b*Od~/ 
Oy). This is equal to -(k/2)ltbl2Op/Oy, where 
p(tb) = tan-l(qbi/Cbr) is the phase of  the com- 
plex amplitude of  the streamfunction de- 
fined in (1) and (2). Thus a growing distur- 
bance must have Op/Oy positive where 
aff/Oy is positive and vice versa. This re- 
quirement is confirmed in Fig. 3, which 

shows that the phases of  ~0 and ~bl both 
have maxima near  the je t  center,  where E 
has its maximum. The fact that the phase 
change is of  order  45 ° in a distance L means 
that the negative correlation between u'v' 
and dE/dy would be clearly observable if 
these were the dominant eddies. As stated 
earlier a positive correlation is observed in 
the visible a tmosphere  (Ingersoll et al., 
1981). 

These disturbances have a substantial 
amount  of  energy associated with their ax- 
ial motion. The three terms on the left side 
of  (11) are associated with the x, y, z com- 
ponents  of  velocity,  respectively,  and they 
are all of  the same order  of magnitude. De- 
spite this large axial velocity,  the motion is 
geostrophic in the xy plane. The last fact 
follows from the smallness of L/ao and the 
fact that the motion is quasi-columnar. 

The physically significant modes,  which 
vary smoothly in y, are insensitive to the 
number  of  terms in the basis function ex- 
pansion. As already stated, the eigenvalue 
c varies by less than 1% at kL = 1, uoro/ 
(21)L 2) = 1.5 when the 1-element solution is 
compared to the 2-element solution. Similar 
changes were noted in comparing the 20- 
term and the 40-term sinusoidal expansions 
in y. H o w ev e r  for larger values of  kL (e.g., 
kL >- 3), the spurious modes have substan- 
tial growth rates (kci -> 0.3). These modes 
oscillate rapidly in y, and their growth rates 
decrease as more terms are taken in the si- 
nusoidal expansion. Yet they would cause 
trouble in a nonlinear t ime-dependent  cal- 
culation that was designed to follow the 
physically significant modes as they grow 
to finite amplitude. 

R E S U L T S :  I N E R T I A L  O S C I L L A T I O N S  

The other  application of  these methods is 
to normal mode oscillations where E = 0. 
Since rotation provides the restoring force, 
they will be called inertial oscillations (e.g., 
Greenspan,  1968). Other authors (Hide, 
1966; Glatzmaier and Gilman, 1981) have 
discussed these phenomena  in other  con- 
texts. Ours is perhaps the first application 
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to Jupiter  and Saturn. As shown earlier, the 
dis turbance has the form (15). For compari-  
son with observa t ions  it is useful to project 
this variat ion onto the surface of the sphere 
and choose  L ~ to be the projected 
wavenumber .  This is accomplished by let- 
ting ke = (I /L)cos 0 be the eas tward 
w a v e n u m b e r  as seen at the surface and k, = 
(I/L)sin 0 be the corresponding northward 
wavenumber ,  with k~ = k and k n  --  It sin ,k. 
The last step follows because  the rapid vari- 
ation in r is spread out when projected onto 
the surface. The phase speed % of  a wave 
as it moves  over  the surface of the sphere at 
angle 0 to the eastward direction is then 

c'p = cke(ke + k~) 1/2 = c cos O, (25) 

where  c is the quantity appearing in Eqs. 
(1)-(3). 

For  fixed L the phase  speed % is a func- 
tion only of the direction of propagation.  A 
vec tor  of  length Cp at angle 0 to the x axis 
t races out a curve that defines the wave.  
For  example ,  a Rossby  wave for a fluid in a 
thin spherical shell has 

- /3  cos 0 
C p = C C o s O -  ke 2 + k ~ ,  - - /3L 2 cos O, 

(26) 

where /3  = (2~/r0)cos 2 ~. The propagat ion 
speed Cp cannot  be negative,  so the Rossby 
wave phase  speed has no eas tward compo-  
n e n t - i t  plots as a circle of  d iameter  2~)L 2 
cos 2 Mro centered half a d iameter  to the 
west  o f  the origin. 

As another  example ,  the analysis of  1P 
gives phase  speeds in the limit k/n ~ O, i.e., 
cos 0 ~ 0. For  h- = 0, Eq. (20) gives c = 
- B / n  z. This relation combined with (25) 
yields 

Cp = - ( B  sin 2 ~.//3)~L 2 cos 0, (27) 

since n 2 = I/(L sin h)2 in this limit. As 
stated in connect ion with Eq, (23), B sin: 
;~ is three to four t imes /3 and is equal to 
(3.29)/3 at ?~ = 30 ° . So at latitude 30 ° we 
have,  for ]cos 01 ~ 1, 

% = (3,29)/3L 2 cos 0. (28) 

This looks like the Rossby  wave circle (26), 
except  it is 3.29 times larger and its center  
lies half a d iameter  to the east of the origin. 
However ,  the analysis of  IP defines only 
the start of  the c u r v e - - t h e  vertical part  that 
lies close to the y axis. This part describes 
northward and southward propagating 
waves ,  and also eas tward and westward 
propagat ing waves  that are t rapped within 
latitudinal limits that are small compared  to 
the e a s t - w e s t  wavelength.  The analyses by 
Hide (1966) and by Glatzmaier  and Gilman 
(1981) were also subject to these restric- 
tions. 

The methods  developed in this paper  al- 
low us to complete  the curve for all direc- 
tions of  propagat ion (values of  0). We can 
also investigate higher modes,  those for 
which the phase  of  the oscillation changes 
with respect  to z. We define the Mth mode 
as an oscillation with M nodes (zero cross- 
i n g s - - n o t  to be confused with finite ele- 
ment nodes) be tween z = - s i n  ?, and z = 
sin ?,. IP ' s  results are for the 0th mode fin- 
phase oscillations at all z). 

Figure 4 shows the curves at latitude 30 °, 
using the 8-element model.  The results dif- 
fer f rom the 16-element model by less than 
0.01%. The speeds are shown scaled by V • 
2~L2/ro, where V is the unit indicated with 
each curve.  Mode 0 propagates  eastward 
with a max imum phase speed of 
(8.363)21)LZ/ro. This mode does not propa- 
gate westward.  Mode 1, for which the oscil- 
lations in the northern and southern hemi- 
spheres are 180 ° out of  phase,  propagates  
eas tward  with a max imum phase speed of 
(ll.502)21)LZ/ro. Its max imum westward 
speed is (0.943)2~L2/ro. Higher  modes have 
higher speeds.  The Rossby  wave,  which is 
not an internal mode,  is shown for refer- 
ence only. Its max imum westward speed is 
(0.750)21~L2/ro. 

According to Fig. 4, the complete  curve 
is not a circle; the phase speed is strongly 
peaked in the direction of eas tward propa- 
gation. This peaking increases as the lati- 
tude decreases .  Table I shows the eastward 
phase speed (cos 0 -= 1) for the lowest even 
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FIG. 4. Propagation diagram for deep inertial waves 
projected onto the surface of  the sphere at latitude 30 °. 
The length of the vector from the origin to the curve 
represents the phase speed scaled by V21ILZ/ro, where 
V is the unit indicated, and 27rL is the wavelength 
projected onto the surface. The lowest four axial 
modes are shown. The Rossby wave curve is for thin 
spherical shells, and is shown for reference purposes.  
Density is assumed to vary as sin(TrR)/(TrR) as in 
Fig. 2. 

mode (mode 0) and the eastward and west- 
ward phase speeds (cos 0 = -+1) for the 
lowest odd mode (mode 1). These results 
are for pure eas t -wes t  propagation, waves 
with no variation in y. Below we consider 
waves  that are trapped in y, i .e. ,  waves 
whose  nor th- south  wavenumber n is much 
larger than the eas t -wes t  wavenumber k al- 

TABLE I 

MAXIMUM PHASE SPEEDS (PosITIVE EASTWARD) 1N 
UNITS OF 21)L2/ro 

Latitude Internal modes Rossby 
(deg) wave 

0 1 1 

15 32.54 39.56 -0.986 -0.933 
30 8.363 11.502 -0.943 -0.750 
45 3.271 5.072 -0.862 -0.500 
60 i.232 2.311 -0.719 -0.250 
75 0.2861 0.8335 -0.464 -0.067 
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FIG. 5. As in Fig. 4 but for constant density. 

though the waves  propagate only in the 
eas t -wes t  direction. 

Figures 5 and 6 show the results for a 
constant density sphere. According to (21), 
H is then 2a0 sin h, a n d - B  sin 2 X is (21)/ 
r0)cos 2 ~k, which is exactly equal to/3. Thus,  
the behavior of  the phase speed (27) for 
Icos 01 ~ 1 is exactly the same as for a thin 
atmosphere (26) but with/3 replaced by - /3.  
Figure 5 shows that the complete phase 

Cy  

2 i I I i I 
Rossby Deep i n e r t i a l  waves  w i t h  / o = c o n s t  
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FIG. 6. As in Fig. 4 but for constant density and 
scaling appropriate to Rossby waves. The phase speed 
is scaled by/3k 2 or 21~L 2 cos 2 h/ro, so Rossby waves 
plot as a circle of unit diameter for all latitudes h. The 
lowest mode (mode 0) is shown at latitudes of 15 °, 30 °, 
45 ° , and 60 ° . The pronounced peak associated with 
pure eastward propagation increases as the latitude 
decreases. 
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speed curve is elongated in the direction 
cos 0 = 1, but less so than when density 
decreases outward (Fig. 4). Figure 6 shows 
the latitude variation of the mode 0 curve, 
and illustrates the fact that the degree of 
elongation for cos 0 = 1 increases toward 
the equator. 

We now compare the phase speeds of 
Fig. 4 and Table I to the 100 m/sec zonal 
velocities that are typical of Jupiter and 
Saturn. The rationale is that some of the 
observed phenomena might be related to 
deep inertial waves. We do not suggest a 
mechanism; our aim is merely to see which 
of the quasi-columnar inertial oscillations 
are in the right ranges of  wavelengths and 
phase speeds. 

We treat the latitudinal bands as wave- 
guides although the mechanism of trapping 
is unclear. Projected onto the equatorial 
plane the y variation of the zonal velocity 
profile is roughly sinusoidal, with a wave- 
length of  order 12,000 km (e.g., IP Figs. 3 -  
5). At middle latitudes where B can be re- 
garded as constant,  the trapped wave has 
the form 

f(z)  cos(ny) exp[ik(x - ct)], (29) 

with L = 1/n of order 12,000/27r km, or 2000 
km. Equation (29) is equivalent to (15), but 
it now describes an eastward or westward 
propagating wave (c > 0 or c < O) with a 
standing wave (trapped) structure in v. 
Three cases are considered: long waves 
trapped in a narrow midlatitude band (k 
n), short waves trapped in a relatively wide 
midlatitude band (k >> n), and long waves 
trapped in a narrow band on the equator. 

For  k ~ n the analysis of IP is applicable. 
Equation (20) gives c = - B / n  ~, where - B  
sin" h is of  order 3/3, or (6[i/a0) cos ~ ac- 
cording to (22). Since c is independent of k 
the waves are nondispersive. For Jupiter 
with n = 1/(2000 kin), we have 

6~  cos h ( s@c) COSh c ~  = 60 .~  (30) aon 2 sin 2 ,k , sin- ,k" 

This is a high speed. At latitudes of 45 °, 30 °, 
and 15 °, the eastward speeds are 85, 208, 

and 865 m/see, respectively, according to 
the above formula. Shorter waves move 
more slowly, as do waves trapped on the 
equator. 

For k >> n the results of Table I are appli- 
cable. Now the eas t -wes t  wavenumber  de- 
termines the scale, and L is l /k.  For L = 
1000 km at latitudes of 45 °, 30 °, and 15 °, the 
eastward speeds are 23, 48, and 166 m/see, 
respectively, for mode 0 oscillations. For 
shorter waves the propagation speeds fall 
as L 2. The waves are dispersive; the depen- 
dence on L is similar to that for Rossby 
w a v e s .  

For long waves trapped on the equator 
Eq. (20) is applicable, but B cannot be re- 
garded as constant.  Instead from (22) we 
have 

- B  -~ 6~/(a0 sin 2 )t) ~ 3~ /y ,  (31) 

where y is radial distance inward from the 
surface of the planet at the equator: 

y = a 0 -  a0cos  X ~ (ad2) sin zx.  f32) 

With h- = 0, Eq. (20) becomes 

d2~b 3~ 
dv - ~ -  + --cv ~b 0, (33) 

the solution of which is a Bessel function 
(e.g., Abramowitz and Stegun, 1965, for- 
mula 9.1.50): 

d~(y) = yJ/~Zl(s), s = 2(3y~/1c1) 1'2, (34) 

where Zi is Jj or Yj for c > 0, and is It or Ki 
for c < 0. Of these four choices only Ji is 
relevant to equatorial waves. For this solu- 
tion ~b oscillates regularly in y and vanishes 
at y = 0. Since ik¢~ is the inward radial ve- 
locity, the condition ~ = 0 at y = 0 corre- 
sponds to having vertical velocity vanish at 
the planet 's  surface, as it should. The Y~ 
and K~ solutions do not vanish at y = 0 and 
have logarithmically singular derivatives. 
The 1~ solution does vanish at 3' = 0, but it 
grows exponentially in y. The J~ solution 
propagates to the east and has its first zero 
at s = 3.8317. 

It is tempting to associate these long- 
wavelength, eastward propagating waves 
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with the equatorial plumes that were seen 
in the latitude band 0 -< h ~ 9 ° at the time of  
Voyager  (Smith et al., 1979, Fig. 1). Setting 
s = 3.8317 at h = 9 ° gives 

c = ~ . lqa0 sin 2 h = 126 m/sec. 

(35) 

This is only slightly greater  than the east- 
ward velocity of  the plumes, but the agree- 
ment is fortuitous. First, we have not iden- 
tified a trapping mechanism, and the value 
of  h at which to apply Eq. (35) is uncertain 
by a factor  of 2 or more. Second,  any trap- 
ping mechanism probably involves the 
zonal velocity profile ~-(y) which we have 
left out of  this analysis. Third, Eq. (20) de- 
scribes a mode 0 solution, but there is no 
evidence that the northern and southern 
hemispheres were oscillating in phase at the 
time of  Voyager.  Fourth,  we have not iden- 
tified an excitation mechanism, and there- 
fore have no basis for associating the mo- 
tion of  the plumes with the propagation of 
an equatorial wave. 

DISCUSSION 

The theoretical model allows us to study 
a class of  motions that could occur  in a ro- 
tating fluid planet. The physical system is a 
simple one. The fluid is inviscid and adia- 
batic, and density is allowed to vary from 
its value at the center  to the value zero at 
the surface. Other studies have emphasized 
the effects of  viscosity, thermal stratifica- 
tion, heat sources,  energy dissipation, and 
other  processes.  Given our  ignorance about 
the interiors of  the giant planets, many ap- 
proaches are possible. A goal of  these stud- 
ies should be to define the relationships be- 
tween potentially observable quantities so 
that observations may be used to limit the 
theoretical possibilities. Another  goal is 
simply to learn about  rotating fluid planets 
by systematically studying idealized sys- 
tems and not worrying about  realism. Both 
goals are consistent with this paper. 

With these caveats in mind, we briefly 

summarize the results of  this paper and 
their relation to observations.  First, the 
limiting condition for stability of  a deep 
zonal flow is similar to that found by IP, 
who considered only disturbances with 
small zonal wavenumber.  As shown by IP, 
Jupiter 's  and Saturn's  zonal velocity pro- 
files are marginally stable according to this 
criterion. On the other  hand, the data refer 
to the cloud tops and do not define the cur- 
vature of  the profile with high accuracy.  
Also the theory is limited by the assump- 
tions that the interior is inviscid and adia- 
batic. And from the correlation between 
u'v'  and dff/dy, it is clear that the eddies 
observed in the cloud zone are not the 
same as the fastest-growing eddies found in 
the theory.  The latter extract  kinetic energy 
from the shear flow; the former put energy 
in. Processes that were not considered in 
this model clearly are active in Jupiter 's  
and Saturn 's  cloud zone. 

The results of  comparing the theory of  
deep inertial oscillations with observations 
of  waves in the atmosphere are equally am- 
biguous. Many structures look like waves 
confined within a band of  latitude. Yet the 
confinement mechanism and the wave exci- 
tation mechanism are beyond the scope of 
this theory.  For  some choices of  latitudinal 
bandwidth and eastward wavelength, the 
eastward propagation speeds of  the theory 
are in the general range of  observed veloci- 
ties. This fact encourages us in our theoreti- 
cal studies, but it does not prove that the 
observed waves are related to deep inertial 
oscillations. 

APPENDIX 

The coordinate system is complicated be- 
cause we use both spherical and cylindrical 
coordinates,  and we employ two length 
scales to describe variations perpendicular 
to the axis of  rotation. The cylindrical ra- 
dial coordinate is r, and r0 is a reference 
value equal to the radius of  the cylinder at 
the zonal je t  maximum. The axial coordi- 
nate is z, which measures distance above 
the equatorial plane. The spherical radial 
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coordinate is R, so that R = (r z + z2) v2. The 
value of  R at the surface of  the planet is ao, 
the planetary radius. The latitude cos ~(rd 
ao) where the reference cylinder meets the 
planetary surface is ,k. The height h of  the 
cylinder is a0 sin X. Flow quantities such as 
velocity and streamfunction are assumed to 
vary with respect to r on a short length 
scale L. For these variations we use the 
inward radial coordinate y = r0 - r. Density 
is assumed to vary only on the long length 
scale a0, and we use the coordinates r and z. 
Distance to the east is denoted by x. The 
flow quantities are assumed to vary with 
respect to x on the short length scale L, and 
are assumed to vary with respect to z on the 
long length scale a0. Thus x, y, z define the 
Cartesian coordinate system used in this 
paper. 
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